94 research outputs found

    Test Stimuli Segmentation and Coding Method

    Get PDF
    Test vector coding and data transmission are the key technologies in the design-for-test of digital integrated circuits (IC). Existing parallel input methods of test stimuli can reduce test application times; however, they need to occupy multiple input ports. Thus, a novel method of test stimuli coding and data transmission was proposed to reduce the test application time of the test vectors and reduce the number of input ports required for the parallel input of test stimuli. This method was based on the segmentation of test stimuli. First, the test stimuli were evenly segmented into eight-bit wide. Second, the eight-bit data of each segment were encoded to the five-bit data according to the compatibility between the test data of each segment. The eight-bit test stimuli input can be completed in one or two clock cycles of automatic test equipment (ATE) by using the five input ports of the chip. The corresponding decoding circuit was added inside the netlist of the circuit to realize the rapid input of the test stimuli. Lastly, the ISCAS\u2789 benchmark circuit was used to conduct experiments, results of this coding method were then compared with those of the serial input method. Results show that the encoding method proposed in this study can save an average of 37% of the parallel input data width and 81.7% of the test stimuli input time. The proposed method in this study can also reduce the test application time and the cost of the IC test. The findings of this study can provide guidance for improving the scan testing method of digital IC

    Verification Method for Area Optimization of Mixed - Polarity Reed - Muller Logic Circuits

    Get PDF
    Area minimization of mixed-polarity Reed-Muller (MPRM) logic circuits is an important step in logic synthesis. While previous studies are mainly based on various artificial intelligence algorithms and not comparable with the results from the mainstream electronics design automation (EDA) tool. Furthermore, it is hard to verify the superiority of intelligence algorithms to the EDA tool on area optimization. To address these problems, a multi-step novel verification method was proposed. First, a hybrid simulated annealing (SA) and discrete particle swarm optimization (DPSO) approach (SADPSO) was applied to optimize the area of the MPRM logic circuit. Second, a Design Compiler (DC) algorithm was used to optimize the area of the same MPRM logic circuit under certain settings and constraints. Finally, the area optimization results of the two algorithms were compared based on MCNC benchmark circuits. Results demonstrate that the SADPSO algorithm outperforms the DC algorithm in the area optimization for MPRM logic circuits. The SADPSO algorithm saves approximately 9.1% equivalent logic gates compared with the DC algorithm. Our proposed verification method illustrates the efficacy of the intelligence algorithm in area optimization compared with DC algorithm. Conclusions in this study provide guidance for the improvement of EDA tools in relation to the area optimization of combinational logic circuits

    Eyes-Open and Eyes-Closed Resting States With Opposite Brain Activity in Sensorimotor and Occipital Regions: Multidimensional Evidences From Machine Learning Perspective

    Get PDF
    Studies have demonstrated that there are widespread significant differences in spontaneous brain activity between eyes-open (EO) and eyes-closed (EC) resting states. However, it remains largely unclear whether spontaneous brain activity is effectively related to EO and EC resting states. The amplitude, local functional concordance, inter-hemisphere functional synchronization, and network centrality of spontaneous brain activity were measured by the fraction amplitude of low frequency fluctuation (fALFF), regional homogeneity (ReHo), voxel-mirrored homotopic connectivity (VMHC) and degree centrality (DC), respectively. Using the public Eyes-open/Eyes-closed dataset, we employed the support vector machine (SVM) and bootstrap technique to establish linking models for the fALFF, ReHo, VMHC and DC dimensions. The classification accuracies of linking models are 0.72 (0.59, 0.82), 0.88 (0.79, 0.97), 0.82 (0.74, 0.91) and 0.70 (0.62, 0.79), respectively. Specifically, we observed that brain activity in the EO condition is significantly greater in attentional system areas, including the fusiform gyrus, occipital and parietal cortex, but significantly lower in sensorimotor system areas, including the precentral/postcentral gyrus, paracentral lobule (PCL) and temporal cortex compared to the EC condition from the four dimensions. The results consistently indicated that spontaneous brain activity is effectively related to EO and EC resting states, and the two resting states are of opposite brain activity in sensorimotor and occipital regions. It may provide new insight into the neural substrate of the resting state and help computational neuroscientists or neuropsychologists to choose an appropriate resting state condition to investigate various mental disorders from the resting state functional magnetic resonance imaging (fMRI) technique

    Intraoperative and postoperative short-term outcomes of intracorporeal anastomosis versus extracorporeal anastomosis in laparoscopic right hemicolectomy

    Get PDF
    BackgroundIntracorporeal anastomosis (IA) is a difficult but popular anastomotic approach for reconstruction of digestive tract after laparoscopic right hemicolectomy, which may reduce some limitations faced during extracorporeal anastomosis (EA).MethodsA retrospective review of 78 patients who underwent laparoscopic right hemicolectomy by a veteran surgeon in a high-volume public tertiary hospital, including 50 patients with IA and 28 patients with EA. The intraoperative-related factors and short-term results of the two anastomotic approaches were compared.ResultsThere was no significant difference in demographics and clinical characteristics between the two groups (P>0.05). The intraoperative blood loss was less (P=0.010) and the incision length was shorter (P<0.001) in the intracorporeal group. Postoperative farting time was faster (P=0.005) and postoperative pain score (VAS) was lower (P<0.001) in IA group. Although the anastomotic time of IA was shorter (P<0.001), the operative time of the two groups were similar. And number of lymph nodes harvested, NLR from POD1 to POD3, postoperative hospital stay and overall hospital stay between the two groups were comparable. Except for significant difference in abdominal infection rate, the Clavien-Dindo classification and the incidence of other postoperative complications were not statistically different. Moreover, the morbidity of abdominal infection decreased with time in the IA group (P=0.040).ConclusionIA is a reliable and feasible procedure, which has faster anastomotic time, earlier return of bowel function and superior postoperative comfort of patient, compared to EA. The postoperative complication rate of IA is similar to that of EA, and may be improved with the IA technical maturity of surgeons, which potentially contributes to the development of ERAS

    Genome-Wide Association Study Reveals Both Overlapping and Independent Genetic Loci to Control Seed Weight and Silique Length in Brassica napus

    Get PDF
    Seed weight (SW) is one of three determinants of seed yield, which positively correlates with silique length (SL) in Brassica napus (rapeseed). However, the genetic mechanism underlying the relationship between seed weight (SW) and silique length (SL) is largely unknown at present. A natural population comprising 157 inbred lines in rapeseed was genotyped by whole-genome re-sequencing and investigated for SW and SL over four years. The genome-wide association study identified 20 SNPs in significant association with SW on A01, A04, A09, C02, and C06 chromosomes and the phenotypic variation explained by a single locus ranged from 11.85% to 34.58% with an average of 25.43%. Meanwhile, 742 SNPs significantly associated with SL on A02, A03, A04, A07, A08, A09, C01, C03, C04, C06, C07, and C08 chromosomes were also detected and the phenotypic variation explained by a single locus ranged from 4.01 to 48.02% with an average of 33.33%, out of which, more than half of the loci had not been reported in the previous studies. There were 320 overlapping or linked SNPs for both SW and SL on A04, A09, and C06 chromosomes. It indicated that both overlapping and independent genetic loci controlled both SW and SL in B. napus. On the haplotype block on A09 chromosome, the allele variants of a known gene BnaA.ARF18.a controlling both SW and SL were identified in the natural population by developing derived cleaved amplified polymorphic sequence (dCAPS) markers. These findings are valuable for understanding the genetic mechanism of SW and SL and also for rapeseed molecular breeding programs
    corecore